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Abstract

The recent availability of residual dipolar coupling measurements in a variety of different alignment media raises
the question to what extent biomolecular structure and dynamics are differentially affected by their presence. A
computational method is presented that allows the sensitive assessment of such changes using dipolar couplings
measured in six or more alignment media. The method is based on a principal component analysis of the covariance
matrix of the dipolar couplings. It does not require a priori structural or dynamic information nor knowledge of the
alignment tensors and their orientations. In the absence of experimental errors, the covariance matrix has at most
five nonzero eigenvalues if the structure and dynamics of the biomolecule is the same in all media. In contrast,
differential structural and dynamic changes lead to additional nonzero eigenvalues. Characteristic features of the
eigenvalue distribution in the absence and presence of noise are discussed using dipolar coupling data calculated
from conformational ensembles taken from a molecular dynamics trajectory of native ubiquitin.

Introduction

The plethora of alignment media that has become
available in recent years for the measurement of resid-
ual dipolar couplings (RDCs) of biomolecules (for
recent reviews see Prestegard et al., 1999; Bax et al.,
2001; de Alba and Tjandra, 2002; Al-Hashimi and Pa-
tel, 2002) raises the question to what extent biomole-
cular structure and dynamics are influenced by their
presence. Some alignment media, such as phages, cor-
respond to suspensions of oriented particles that are
separated by hundreds of Å while others, such as gels,
constitute preferentially elongated cavities. For most
of the time the macromolecular solutes reside far away
from the alignment medium, but when they diffuse
within a close distance of the medium they interact
via non-bonding interactions that disrupt the isotropy
of the orientational distribution leading to the nonzero
dipolar couplings. In case these interactions are com-
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parable in strength to intramolecular interactions they
may change the biomolecule’s structure and its in-
tramolecular dynamics. The magnitude of such effects
can be studied by comparison of residual dipolar cou-
plings measured in different alignment media. For
example, from dipolar coupling data of T4 lysozyme
recorded in two different liquid-crystalline media it
was found that the relative domain orientation remains
essentially unchanged (Goto et al., 2001).

The recently developed model-free analysis of
RDCs (Meiler et al., 2001) provides detailed infor-
mation on averaging effects in RDC data collected
in multiple alignment media. Its application to ex-
perimental N-H RDCs of ubiquitin for 11 alignment
media indicates a significant amount of intramolecu-
lar flexibility (Peti et al., 2002). The method does not
discriminate between homogeneous effects, which are
protein fluctuations that are identical in all media, and
heterogeneous effects, which stem from structural or
dynamic changes between different media.

Recently, backbone N-H RDCs of calbindin D9k
in the presence (1) of paramagnetic ions, (2) of a non-
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ionic liquid crystalline phase, and (3) of both at the
same time were reported (Barbieri et al., 2002). From
the good correlation between the RDCs measured for
(3) and the sum of the RDCs of (1) and (2) it was
concluded, without explicitly using a 3D structural
model of the protein, that the orienting medium is in-
nocent with respect to the structure of the protein in
solution. However, this conclusion may not hold for
all conceivable microscopic models of the alignment
process. Let us assume that the picture for the dilute
liquid-crystalline alignment medium described above
applies, i.e. at a given instant the alignment medium
affects only the small fraction of protein molecules in
the sample that are close to the liquid crystal mole-
cules. On the other hand, the paramagnetic alignment
dominates at a given instant the alignment behav-
ior of the large majority of protein molecules in the
sample, which are all molecules except for the small
fraction of molecules interacting with the liquid crys-
tal. The RDCs measured in situation (3) therefore
correspond in very good approximation to the sum
of the RDCs of the paramagnetically aligned protein
molecules and the RDCs of the proteins interacting
with the liquid crystal molecules. This is the same
as when the RDCs are independently measured (sit-
uations (1) and (2)) and the corresponding couplings
are added a posteriori. This is true whether the inter-
acting and non-interacting protein molecules have the
same 3D structure or not. Therefore, for this particular
alignment model the above experimental analysis is
inconclusive with respect to the effect of the alignment
medium on the protein structure.

An analysis method is presented here to assess
the effect of the alignment media on protein struc-
ture that does not depend on the microscopic details
of the alignment mechanism. It is demonstrated that
a principal component analysis applied to RDC sets
measured in at least six media with different alignment
tensors is highly sensitive to structural heterogeneity
effects induced by the media. After a presentation of
the method, it is applied to synthetic RDC sets cal-
culated from ubiquitin conformations obtained from a
molecular dynamics (MD) computer simulation with
and without the addition of random Gaussian noise.

Method

Principal component analysis of dipolar couplings

We consider residual dipolar couplings D
(k)
i belong-

ing to internuclear vectors i = 1,..., N of a protein
measured in M different alignment media k = 1, ...,
M. From the M · N couplings a N × N weighted
covariance matrix C is calculated according to

Cij = 1

M − 1

M∑
k=1

wk(D
(k)
i − 〈Di〉)(D(k)

j − 〈Dj 〉)
i, j = 1, ..., N,

(1)

where 〈Di〉 = 1
M

m∑
k=1

D
(k)
i is the average of coupling

Di over the M alignments. The weights wk in Equa-
tion (1) allow one to balance the importance of the
RDC sets belonging to different alignments k. In the
following, these weights are set to wk = 1/σ2

k , where

σ2
k = 1

N−1

N∑
i=1

(D
(k)
i − 〈Di〉)2 is the variance of the

dipolar couplings collected in medium k.
Next, a principal component analysis is applied to

the weighted covariance matrix C by diagonalization

C|q〉 = λq |q〉, (2)

where |q〉(q = 1, ..., N) are the N normalized eigen-
vectors and λq are the corresponding eigenvalues. All
eigenvalues fulfill λq ≥ 0. The eigenvalues are sorted
with the smallest one being λ1. In the absence of ex-
perimental noise, no more than five eigenvalues differ
from zero for the following two cases:
(a) If the protein adopts a static structure that remains
unchanged in all media or
(b) if the protein is present as a multiple conforma-
tional ensemble that is identical in all media.

In case (a) the covariance matrix is related to the
metric matrix of rank L = 2, which exhibits 2L + 1
nonzero eigenvalues in analogy to the properties of
the metric matrix in distance geometry (Prompers and
Brüschweiler, 2002; Hus and Brüschweiler, 2002).
Case (b) follows from (a) because of the linear av-
eraging behavior of RDCs (cf. Equation 9 of Meiler
et al., 2001). The appearance of additional nonzero
eigenvalues is therefore direct evidence of structural
or dynamic heterogeneity or the presence of exper-
imental errors as is discussed below. The proposed
method is termed ‘Self-Consistency of Dipolar Cou-
plings Analysis’ (SECONDA).
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Collectivity of eigenvectors

The collectivity κ, which is a scalar measure for
each of the N eigenvectors |q〉 of C, is defined as
(Brüschweiler, 1995; Prompers et al., 2001a):

κq = 1

N
exp


−

N∑
j=1

∣∣|q〉j
∣∣2

log
∣∣|q〉j

∣∣2


 · 100%, (3)

where |q〉j is the jth component of the normalized
eigenvector |q〉. κ ranges between 100/N % and 100%,
which is the percentage of the RDCs that significantly
contribute to eigenvector |q〉. The κq values directly
indicate whether variations of the RDCs between dif-
ferent media occur in a collective or more localized
fashion. Each eigenvalue and eigenvector pair can then
be conveniently represented by the two numbers λ and
κ.

Calculation of dipolar couplings

In the Results section different models of protein be-
havior and alignment tensors are tested with respect
to their effect on the eigenvalue distribution. For
this purpose, residual dipolar couplings are calculated
for a given protein structure with vector orientations
(θ

(k)
i ,ϕ

(k)
i ) (i = 1, ..., N) defined in the eigenframe of

alignment tensor D(k) according to

D
(k)
i = D

(k)
a

{
3 cos2 θ

(k)
i − 1+

3
2R(k) sin2 θ

(k)
i cos 2ϕ

(k)
i

}
,

(4)

where D
(k)
a = D

(k)
zz /2 is the axial component and

R(k) = 2/3 · (D
(k)
xx − D

(k)
yy )/D

(k)
zz is the rhombicity

of the alignment tensor D(k).
If instead of a single structure a conformational

ensemble consisting of P conformers is present, the
D

(k)
i values of Equation 4 are first averaged over all

conformers

D
(k)
i = 1

P

P∑
p=1

D
(k)
i,p, (5)

where D
(k)
i,p is the RDC belonging to vector i of

conformation p in alignment medium k.

Molecular dynamics simulation

Ensembles of conformations of ubiquitin were gen-
erated by a MD simulation using the program
CHARMM (Brooks et al., 1983; MacKerell et al.,

Figure 1. Collectivity κ vs. eigenvalue λ distribution of RDC co-
variance matrix of 68 backbone N-H vectors of ubiquitin for 11
different alignments calculated from the MD snapshot at 10 ns
(filled circles) and a homogeneous protein ensemble represented by
100 MD conformations sampled with a time increment of 100 ps
(open circles). The ∗ symbols indicate κ, λ values for an ensem-
ble consisting only of the 20 first MD conformations of the above
ensemble.

1998). An all-atom representation of the X-ray struc-
ture of ubiquitin (Vijay-Kumar et al., 1987) was em-
bedded in a cubic box including 2909 explicit water
molecules. The simulation was performed at a tem-
perature of 300 K for 11 ns under periodic boundary
conditions. More details on the trajectory are de-
scribed elsewhere (Lienin et al., 1998; Prompers et al.,
2001b). The first 1 ns of the MD simulation was used
for equilibration and a total of 1000 snapshots with a
time increment of 10 ps were analyzed from the fi-
nal 10 ns of the trajectory. Two additional ensembles
were generated with a finer time resolution (exhibiting
smaller average pairwise root-mean-square deviations
(RMSD)) by storing 600 snapshots every 1 fs between
10 ns and 10.0006 ns and by storing 600 snapshots
every 100 fs between 10 ns and 10.06 ns, respectively.
The structures of each ensemble were orientationally
aligned with respect to a reference structure.

Results and discussion

Homogeneous protein behavior

Residual dipolar couplings were calculated for 68
backbone N-H vectors of ubiquitin for 11 alignment
tensors using the same MD snapshot at 10 ns. The
68 N-H vectors include all backbone N-H vectors of
ubiquitin except for the N-terminal group and the N-H
groups of the 4 C-terminal residues that exhibit sig-
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nificantly increased mobilities. The alignment tensors,
each specified by five parameters (3 Euler angles, Da ,
and R), were chosen randomly. The allowed values
for R lie between 0 and 2/3, whereas the range of
Da was not restricted (due to the division by σ2

k in
Equation (1), Da has no influence on the weighted
covariance matrix).

The weighted covariance matrix C was determined
according to Equations 1 and 4 and a principal compo-
nent analysis was performed by diagonalization of C.
For each eigenvector |q〉 the collectivity κ was calcu-
lated according to Equation 3. The collectivities κj are
plotted vs. the eigenvalues λj in Figure 1 (κ, λ plot)
for the reference structure at 10 ns (filled circles). Only
five eigenvalues are finite while the other six eigenval-
ues are smaller by at least a factor of 106. The latter
can be considered as zero for all practical purposes.
The five finite eigenvalues vary between 3.7 and 31.9
whereas the collectivities range between 47.9% and
59.8%.

The high degree of singularity of the covariance
matrix is unchanged when the dipolar couplings are
averaged over an ensemble consisting of 100 struc-
tures with 100 ps increment using Equation 5 (open
circles). The average pairwise backbone RMSD of this
ensemble is 0.96 ± 0.25 Å and the average computed
N-H S2 order parameter (Lipari and Szabo, 1982) is
0.83 ± 0.11. The nonzero eigenvalues change only
little and the corresponding collectivities vary by less
than 10%. If a subset of the ensemble is used in-
stead consisting of the first 20 structures, the λ, κ

values lie typically between the two cases (Figure 1).
Thus, the overall sensitivity of the covariance matrix
to homogeneous protein behavior is relatively low.

Heterogeneous protein behavior

Additional nonzero eigenvalues emerge when the pro-
tein structure varies among media, i.e., when the
protein behavior is heterogeneous across the media.
This is demonstrated by assigning 11 MD confor-
mations to the 11 alignment tensors. To assess the
sensitivity of the eigenvalues on structural changes, 9
sets of conformations are defined each consisting of
11 MD conformations sampled with a constant time
increment of 1 fs, 2 fs, 10 fs, 50 fs, 200 fs, 1 ps,
10 ps, 100 ps, and 900 ps, respectively. The larger
the time increment the larger are on average the struc-
tural differences between snapshots. The eigenvalue
and collectivity distributions of these ensembles are
depicted in Figure 2. There are 10 nonzero eigenvalues

λ2, ..., λ11 corresponding to the number of degrees
of freedom (number of alignment tensors minus one).
The eigenvalues form two distinct clusters containing
5 eigenvalues each. The 5 largest eigenvalues, which
reflect structural properties (Hus and Brüschweiler,
2002), stay close to the original values, whereas the
other five eigenvalues are sensitive to the time incre-
ment. For short time increments a clear gap is visible
between the two eigenvalue clusters. A quantitative
measure for the size of the gap is the ratio of the fifth
largest eigenvalue λ7 and sixth largest eigenvalue λ6,

ρ = λ7/λ6. (6)

ρ gradually decreases for larger time steps taking a
maximal value at ρ = 28.9 for �t = 1 fs and a min-
imal value of ρ = 1.8 for �t = 100 ps (Figure 3a).
Generally, the smaller the gap the less consistent are
the dipolar couplings of the structural ensemble with a
unique protein structure.

The ρ values can be correlated with respect to the
average pairwise backbone RMSD of each ensemble
(Figure 3b) as well as the average angular S2 order
parameter of the N-H vectors (Figure 3c). The pair-
wise average RMSD varies between 0.02 Å and 0.98 Å
for the different ensembles and it is strongly correlated
with 1 − 〈S2〉 (correlation coefficient r = 0.992, Fig-
ure 3d). With increasing 〈RMSD〉, ρ decreases rapidly
and fluctuates about a mean value. The two quantities
obey in good approximation an analytical relationship
ρ = 0.58/〈RMSD〉 + 1.58, which is indicated as solid
line in Figure 3b. An analogous relationship exists
between ρ and 1 − 〈S2〉 (see caption of Figure 3).

Repetition of the above calculation for 1000 sets
of randomly chosen alignment tensors yields informa-
tion about the dependence of the gap on the alignment
tensors. In Figure 4, the mean value and standard de-
viation of ρ are displayed for the different ensembles
with increasing time increments. While ρ clearly de-
pends on the alignment tensor set as can be seen from
the standard deviations, the trends of Figure 3a are
reproduced, i.e., ρ decreases with an increasing en-
semble diversity and approaches an average value of
ρ = 2.04.

Eigenvector properties for simplified models of
structural change

The eigenvectors of the covariance matrix provide
direct information on collective structural changes in-
duced by the presence of the alignment media. This
is illustrated by using two simplified models of struc-
tural changes. In the first case, the α-helix including
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Figure 2. Eigenvalue and collectivity distributions of RDC covariance matrices calculated for heterogeneous protein systems by assigning the
11 alignments different MD snapshots with increasing time increments of 1 fs, 2 fs, 10 fs, 50 fs, 200 fs, 1 ps, 10 ps, 100 ps, and 900 ps.

residues 23 to 31 is rotated about an axis orthogonal to
its symmetry axis (defined as the mean direction of all
backbone N-H vectors) and the N-H vector of residue
Ile23 while the rest of the protein was kept fixed. In the
second case, the N-terminal β-sheet including residues
1 to 17 is rotated along an axis orthogonal to the sheet.
The rotation angles were varied from −20◦ to 20◦ in
constant increments of 4◦. The κ, λ plots for both cases

are given in Figure 5, panels a and b. The gap ρ is 17.6
for the helix motion and 10.7 for the sheet motion.

Due to the reduced number of degrees of freedom
for this type of motion only 9 instead of 10 eigen-
values are effectively nonzero. The eigenvectors are
displayed in Figures 5c, d. While the five largest eigen-
vectors |7〉, . . . |11〉 reflect average structural proper-
ties and are virtually identical for the two models,
the following four eigenvectors selectively emphasize
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Figure 3. Correlation plot of gap ρ = λ7/λ6 and MD time step �t (panel a), ρ and average pairwise backbone RMSD (panel b), and ρ and
average S2 N-H order parameter (panel c). In panel d, 1−〈S2〉 is plotted versus 〈RMSD〉 with the straight line corresponding to the relationship
1−〈S2〉 = 0.139 ·〈RMSD〉+0.018 with a correlation coefficient of 0.992. Sets of MD snapshots were used with the following time increments:
1 fs, 2 fs, 5 fs, 10 fs, 50 fs, 100 fs, 200 fs, 500 fs, 1 ps, 5 ps, 10 ps, 20 ps, 50 ps, 100 ps, 250 ps, 500 ps and 900 ps.

Figure 4. Mean value and standard deviation of ρ for increas-
ing time increments �t for 1000 calculations using the same MD
snapshots but different alignments tensors.

the secondary structural elements that undergo reori-
entational modulation. Thus, the eigenvectors pro-
vide a detailed picture of the dominant reorientational

structural changes that are induced by the different
alignment media.

Effect of experimental noise

Nonzero eigenvalues do also emerge due to experi-
mental uncertainties (noise) present in the RDC data.
To quantitatively assess this effect on the eigenvalue
distribution, random Gaussian noise was added to the
RDCs for the reference structure with standard devia-
tions corresponding to 0%, 2%, 5%, 10%, 20%, and
30% of Da . The eigenvalue and collectivity distribu-
tions of the resulting principal component analysis are
displayed in Figure 6. The same random number gen-
erator seed was used for all panels. As in the hetero-
geneous ensemble case, there are a total of 10 nonzero
eigenvalues. The five largest eigenvalues, λ7, ..., λ11,
and their collectivities κ7, ..., κ11 remain largely un-
affected by the amount of noise added. In contrast,
eigenvalues λ2, ..., λ6 grow steadily as the noise level
is increased. This behavior is also reflected in the
gap ρ, which monotonously decreases with increasing
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Figure 5. κ, λ plots of reorientational rigid-body motions of (a) the central α-helix and (b) the N-terminal β-sheet with respect to the rest of
ubiquitin. Panels c and d: Squared elements of eigenvectors plotted vs. residue number. Panels a and c correspond to reorientations of the helix
by ±20◦ about an axis perpendicular to its symmetry axis (see text). Panels b and d correspond to reorientations of the N-terminal β-sheet about
the axis that is perpendicular to the sheet.

noise taking values between 517.5 and 3.3. The depen-
dence of ρ on the noise level is well parametrized by
the relationship ρ = 2064.8/(noise %)2 + 1.42. Very
similar dependencies are obtained for other random
number generator seeds and other alignment tensors
suggesting that this type of relationship may hold more
generally.

The gap ρ was determined for 7 to 50 align-
ment media with variable amounts of noise using the
reference snapshot at 10 ns (Figure 8). Each point
corresponds to the average over 50 randomly chosen
alignment tensor sets. The gap increases with the num-
ber of alignments reflecting an effective reduction of
noise effects.

The simultaneous presence of noise and struc-
tural heterogeneity was analyzed by adding random

Gaussian noise to the ensembles of Figure 2. For
example, for noise levels of 5% and 10% the gap ρ be-
longing to the ensemble with a 1 fs time step is reduced
by a factor of 1.33 and 2.21, respectively. If the char-
acter and amount of experimental noise is known, it
is possible in principle to determine a noise-corrected
ρ value, which then solely reflects the amount of
structural heterogeneity. If however the nature of the
experimental errors is unknown, the (uncorrected) ρ

value yields an upper bound for structural heterogene-
ity based on the relationships plotted in Figure 3.
Conversely, if a certain amount of structural hetero-
geneity is assumed, SECONDA allows one to obtain
an estimate of the experimental errors.

The manifestation of heterogeneous reorientational
rigid-body movements described in Figure 5 with re-
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Figure 6. Eigenvalue and collectivity distributions of RDC covariance matrices calculated for the MD reference snapshot of ubiquitin for 11
different alignments with Gaussian noise added corresponding to 0%, 2%, 5%, 10%, 20%, and 30% of Da .

Figure 7. Gap ρ = λ7/λ6 of Figure 6 as a function of the noise
level. The solid line corresponds to the hyperbolic function defined
in the text.

orientational amplitudes of ±20◦ was analyzed in the
presence of variable amounts of noise with the re-
sults displayed in Figure 9. The cumulative amplitudes
were calculated as the sum of the squared elements
of the four dynamical eigenvectors weighted with the
square-root of their eigenvalues. For noise levels up
to 10%, the dynamic regions can be easily identified,
whereas for noise levels above 20% the dynamic fea-

Figure 8. Dependence of gap ρ on the number of alignments in the
presence of variable amounts of noise. Each point was determined
by averaging over 50 randomly chosen alignment tensor sets.

tures can no longer be unambiguously discerned from
noise effects.

Conclusion

A new analysis method has been described that al-
lows one to test the self-consistency of RDC data
collected in multiple alignments with respect to dif-
ferential structural changes induced by the media. The
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Figure 9. Manifestation of heterogeneous reorientational rigid-body changes induced by different alignment media (see Figure 5) in the
presence of variable amounts of noise. (a) Fluctuations of central helix, (b) fluctuations of N-terminal β-sheet. The same random number
generator seed was used for each graph.

SECONDA method is based on a principal component
analysis of the covariance matrix of the RDC data.
The gap between the five largest eigenvalues and the
remaining eigenvalues is a measure for the degree of
structural heterogeneity. The eigenvectors depict col-
lective structural changes induced by the alignment
media. The presence of multiple conformations has
no effect on the gap as long as the same internal
conformers occur in all media with unaltered pop-
ulations, while the presence of noise in the dipolar
couplings narrows the gap. The method is most robust
if the experimental noise level is low and if the align-
ment tensors probe distinct directions. Application of
SECONDA to experimental RDC sets of ubiquitin is

currently under way. Because SECONDA does neither
require a 3D structural model nor explicit knowledge
of the alignment tensors, it should be applicable to
RDC data of folded, partially folded, and non-folded
biomolecular systems.
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